

Materials Recovering Feasibilities from C&D Waste Landfill, JS "Bionovus", Vilnius, Lithuania

COST is supported by the EU Framework Programme Horizon 2020

Bučinskas A.¹, Denafas G.¹ ¹Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Lithuania

Three equally spaced points on the landfill were chosed as sampling points: Nr. 1 – N 54.6306803; E 25.3133167; Nr. 2 – N 54.6314789; E 25.3127156; Nr. 3 – N 54.6318637; E 25.3125094.

During excavation in 2018, after re-cultivation, at selected points the Doosan DX300Lc (bucket volume 1.9 m3) excavated pits with an average dimensions of 2.5x2x2 m. The depth of the pits was up to 2 m. The thickness of the removable soil cover ranged from 0.5 to 0.8 m. The volume of the excavated waste was determined by additional measurements by roulette. taking into account the geometry of the pit. Valuable materials (including metals) were picked out before recultivation.

Immediately after excavation. the waste contents were dumped into a bucket of the CASE 821E (3.5 m3). which records the mass of the excavated contents. By mass to volume ratio density of waste was estimated. Further. the excavated waste was loaded by a forklift truck into a Kestrack Novum STD self-propelled hopper sieve with two sections of 24x36 mm and 12x18 mm respectively. The waste was sifted into the following granulometric fractions:

Economic scenarios for mining of "Bionovus" landfill after re-cultivation

Management	Scenarios				
features	Pesimi		Optimisti		
	stic	Average	С		
Portion of					
metals to be	50	75	100		
sold %					
Portion of					
inerts to be	50	75	100		
solds %					
Portion of					
recyclable					
plastics to be	0	25	50		
sold, %					
Portion of			50		
plastics to be	100	75			
incinerated, %					
Portion of other					
flammables to					
be incinerated,	100	100	100		
%					
Total amount to					
be incinerated, t	27840	26730	25619		
Number of trips					
to incineration,					
25 t truck	1114	1069	1025		

- fine fraction (mainly soil). particle diameter d<17 mm;
- medium fraction (mainly stones. pieces of concrete and bricks); 33 mm<d<17 mm;
- coarse fraction; d> 33 mm.

Two pilot excavations were made in Construction and Demolition Landfill "Bionovus" LLC, Vilnius, Lithuania - before and after the re-cultivation, in 2015 and 2018. Coarse fraction before and after recultivation was analyzed.

1. Before recultivation, recyclable plastics made up 8.78%, inert fraction – 18.89%, energy fractions (wood, textile, rubber, paper) – 32.59%, metals – 12.34%.

2. Concrete-brick-stone fraction is dominant in the coarse fraction - 83.16%, energy fractions (wood, textile, rubber, paper) present at 6.66%, 6.30% for recyclable plastics (soft plastics, hard plastics, PS) foams), metals (mainly ferromagnetic) - 2.32%, non-recyclable inert fractions (glass, ceramic, mineral wool) - 1.56%.

Three possible economic scenarios were calculated for mining of recultivated landfill (it was assumed that top 3 meters of the landfill will be mined). It is clear that even the most optimistic scenario would yield negative balance.

Financial balance sheet for "Bionovus" landfill mining economic scenarios

ics		Scenarios			
stics	Expenses/incomes	Pesimistic	Average	Optimistic	
ne					
	Excavation expenses	512056	512056	512056	
	Transportation to				

Location of "Bionovus" C&D Landfill in Lithuania

Location of Lithuania in Europe

	incineration expenses.			
Paper and cardboard	300 €/trip	334200	320700	307500
Wood				
Rubber	Revenue from metals	242329	363493	484658
Other flammable	9			
Metals	Revenue from inerts	35327	52991	70655
 Inerts 	Revenue from	_		
	recyclable plastics		38200	76401
	Balance	-568600	-378072	-187842

View of "Bionovus" landfill before recultivation (a, 2015 year), and after recultivation (b, 2018 year).

gintaras.denafas@ktu.lt; algimantas.bucinskas@gmail.com